a2 United States Patent

Singh et al.

US009336001B2

US 9,336,001 B2
*May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

DYNAMIC INSTRUMENTATION

Applicant: Lenovo Enterprise Solutions

(Singapore) Pte. Ltd., Singapore (SG)

Inventors: Balbir Singh, Gurgaon (IN); Maneesh
Soni, Bangalore (IN)

Assignee: Lenovo Enterprise Solutions
(Singapore) Pte. Ltd., Singapore (SG)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 82 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/324,073

Filed: Jul. 3,2014

Prior Publication Data
US 2014/0325193 Al Oct. 30, 2014

Related U.S. Application Data

Continuation of application No. 12/642,973, filed on
Dec. 21, 2009, now Pat. No. 8,832,666.

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 9/30 (2006.01)

GO6F 11/34 (2006.01)

GO6F 11736 (2006.01)

U.S. CL

CPC ... GO6F 9/30145 (2013.01); GO6F 93005

(2013.01); GO6F 9/30181 (2013.01); GO6F
1173471 (2013.01); GO6F 11/3644 (2013.01);
GO6F 2201/865 (2013.01)
Field of Classification Search
None
See application file for complete search history.

150

(56) References Cited
U.S. PATENT DOCUMENTS
6,499,137 Bl 12/2002 Hunt
6,898,785 B2 5/2005 Ramasamy et al.
6,931,632 B2 8/2005 Ramasamy et al.
7,523,446 B2 4/2009 Keniston
8,286,139 B2 10/2012 Jones et al.
8,745,596 B2* 6/2014 Maybee GOGF 11/3644
717/124
2004/0168157 Al* 82004 Hundt GOG6F 9/4843
717/130
(Continued)
OTHER PUBLICATIONS

Ramasamy et al., Dynamic Binary Instrumentation on IA-64. EPICI
Workshop, MICRO34, Dec. 1-5, 2001, Austin, TX: http://www.cs.
tufts.eduw/comp/150PAT /tools/caliper/epic L .pdf.

(Continued)

Primary Examiner — Evral E Bodden
(74) Attorney, Agent, or Firm — Katherine S. Brown; Jeftrey
L. Streets

(57) ABSTRACT

Techniques for dynamic instrumentation are provided. A
method for instrumentation preparation may include obtain-
ing address data of an original instruction in an original
instruction stream, obtaining kernel mode data comprising a
kernel breakpoint handler, obtaining user mode data compris-
ing a user breakpoint handler, allocating a page of a process
address space, creating a trampoline, associating the trampo-
line with a breakpoint instruction, and replacing the original
instruction with the breakpoint instruction. A method for
instrumentation may include detecting the breakpoint
instruction, calling the kernel breakpoint handler, modifying
an instruction pointer via the kernel breakpoint handler such
that the instruction pointer points to the trampoline, and
executing the trampoline. The system for instrumentation
may include a breakpoint setup module and a breakpoint
execution module for respectively setting up and completing
instrumentation involving the trampoline.

19 Claims, 6 Drawing Sheets

152

Process
Address
Space

Handler

L i i 128 Incoming
Request Request i Instruction
I - 1
134 === L S - 3
: 1 1 154
132 1
| > 130
Address | : Kernel Breakpoint
1
i Breakpoint i Handler
KemelMode | | Breakpoint pC !
Data ! Setup Module Exection 1
135 —~7 Module !
User Mode H
Data I
148 1
! ' i !
! 1
1
138 H Breakpoint 144 H
! 143 Data ¢ i
1
T li 1
— Data 146 !
1
Map Data 140 !
User Breakpoint :
1
1
1
1
1
1
1
1
1
1
1
1
|

US 9,336,001 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0205720 Al
2004/0221278 Al
2005/0108562 Al
2006/0095895 Al*

10/2004 Hundt

11/2004 Dankel et al.

5/2005 Khazan et al.

5/2006 Sudheer GO6F 11/28
717/130

2007/0168979 Al

2008/0127117 Al

2008/0133896 Al

2010/0095281 Al

2012/0216015 Al

OTHER PUBLICATIONS

7/2007 Kumar et al.
5/2008 Panchamukhi et al.
6/2008 Keniston

4/2010 Raber

8/2012 Mitra

Kenistonet al., Ptrace, Utrace, Uprobes: Lightweight, Dynamic Trac-
ing of User Apps. Proceedings of the Linux Symposium, vol. One,
Jan. 27-30, 2007, Ottawa, Ontario, Canada: http://www.kernel.org/
doc/01s/2007/01s2007v1-pages-215-224 pdf.

Mavinakayanahalli et al., Probing the Guts of Kprobes. Proceedings
of the Linux Syposium, vol. Two, Jul. 19-22, 2006, Ottawa, Ontario,
Canada: http://www.kernel.org/doc/ols/2006/01s2006v2-pages-109-
124 pdf.

Cantrill et al., Dynamic Instrumentation of Production Systems. Pro-
ceedings of the General Track: 2004 USENIX Annual Technical
Conference, Jun. 27-Jul. 2, 2004, Boston, MA: https://www.usenix.
org/legacy/publications/library/proceedings/usenix04/tech/general/
full__papers/cantrill/cantrill.pdf.

Nethercote, Dynamic Binary Analysis and Instrumentation. Techni-
cal Report: No. 606, Nov. 2004, University of Cambridge, United
Kingdom: http://www.cl.cam.ac.uk/techreports/yUCAM-CL-TR-
606.pdf.

Dyninst Programmer’s Guide. Release 6.1, Nov. 2009. Computer
Science Department, University of Wisconsin-Madison, Madison,
WI and Computer Science Department, University of Maryland,
College Park, MD: http:/ftp.cs.wisc.edu/paradyn/releases/release6.
1/doc/dyninstProgGuide.v6 1.pdf.

* cited by examiner

US 9,336,001 B2

Sheet 1 of 6

May 10, 2016

U.S. Patent

Il 'Old
¢cl A ¢l
< 4% 9zl YA} 8Ll
801 19]|04u0D S/0 1q aoeLiau|
aolneq |« indinOanduy MIOMION
ndino 901
J3]|0U0)D boL
Alows 20l
P11 Aows J0SS900.(
J9]j0U0D
Aejdsig

_,

oLl \\

v_\o_\

US 9,336,001 B2

Sheet 2 of 6

May 10, 2016

U.S. Patent

Ja|pueH
wiodyesig |pu1s3]

/

141"

T T Tt T
_ _
_ _
I I
I I
“ afed "
_ aoedg “
I x ssaIppy I
“ Zhl $59901d "
I 13|pueH I
I —— y |
I E_ogv_m;whm_ J19sN x _ |
_] _
_ 9pl eleq o ©1eq den !
I I
I " suljodwel| |
_ _
_ x) eled £yl |
_ bhl juiodyesig “ gsl
_ _
| /])
| L 4 gyl |
_ ! ered
_ " Bpo Jasn
_ _
_ 3|npo | I
_ corsﬂo_\v,ﬁ_m_ SINPOW driag ! eleq
! . ulodyea. DA
! uiodyea.g juloadyes.g i SPO [BUIB)]

’ / \ I
I I ssalppy
_ o€l o
I cel I
I I m
e e . Vel

!
uolonJIsu| ! Jsenbay Jsenbay
Buiwoou| 8¢l uonessiBoy uonejuaNnsU|
ZSi 0s1 ecl

o€l

U.S. Patent May 10, 2016 Sheet 3 of 6 US 9,336,001 B2

300

A

310

Instrumentation
Request?

320

N Set Up Breakpoint

340

~

Send Error Message

330

FIG. 3

U.S. Patent May 10, 2016 Sheet 4 of 6 US 9,336,001 B2

400
~ Start)
405 A 2
I Get Address Data
410 A
N Get Kernel Mode Data
415 Y
Get User Mode Data

425

N

Send Error Message

420

Valid Address?

430
N Allocate Page Memory
435 T
™~ Create Trampoline and
Store in Page Memory
440 y___
™ Copy User Breakpoint Handler
to Page Memory
445 _ Y
.| Register Kernel Breakpoint
Handler
450 Y
T~ Insert Breakpoint
455 Yy
End <

FIG. 4

U.S. Patent May 10, 2016 Sheet 5 of 6 US 9,336,001 B2

510
Get Incoming Instruction v
520
Breakpoint Hit?
yes
530
Call Kernel Breakpoint Handler -I
Y
. . . . 540
Modify Instruction Pointer via wa
Kernel Breakpoint Handler
A 550
Execute Trampoline wh
A 4 560

>(End }I

FIG. 5

U.S. Patent May 10, 2016 Sheet 6 of 6 US 9,336,001 B2

600
C Start >\J'

A 4
Save Registers and 610
Thread Stack ~

Y
Execute User Breakpoint e
Handler

620

Y
Restore Registers and 630
Thread Stack —

A 4

640
Execute Original Instruction "

Y
Jump to Next Instruction e 650
After Breakpoint

A 4

660
C End)J

FIG. 6

US 9,336,001 B2

1
DYNAMIC INSTRUMENTATION

CROSS REFERENCE TO RELATED
APPLICATION

The present application is a continuation application of,
and claims priority under 35 U.S.C. §120 to, U.S. patent
application Ser. No. 12/642,973, filed on Dec. 21, 2009.

BACKGROUND

Dynamic instrumentation of software (e.g., a computer
program), is used to collect data (e.g., performance data) with
respect to the software without recompiling or rebuilding the
software. The collected data, generally may be used to solve
deep-rooted problems such as deadlocks, resource conten-
tion, memory leaks, etc. In typical computer based systems
implementing a kernel mode and a user mode, it is useful to
collect data from the kernel mode as well as from the user
mode with low overhead. Accordingly, there is a need for
dynamic instrumentation solutions that achieve data collec-
tion involving both the kernel mode and the user mode with
low overhead.

SUMMARY

Dynamic instrumentation involving both the kernel mode
and the user mode may be achieved via instrumentation solu-
tions involving a trampoline. Such instrumentation solutions
are disclosed in accordance with the various embodiments
described herein. In accordance with these various embodi-
ments, data collection via instrumentation can be achieved
with low overhead.

In accordance with a first aspect of the various embodi-
ments described herein, a method for instrumentation prepa-
ration is provided. This method involves setting up a break-
point in preparation for instrumentation. The method may
include obtaining address data of an original instruction in an
original instruction stream, obtaining kernel mode data com-
prising a kernel breakpoint handler, obtaining user mode data
comprising a user breakpoint handler, allocating a page of a
process address space, creating a trampoline, associating the
trampoline with a breakpoint instruction, and replacing the
original instruction with the breakpoint instruction. The
method further may include storing the trampoline in the page
and copying the user breakpoint handler to the page.

The trampoline created in accordance with this method
may include at least one of a copy of the original instruction,
a set of instructions for saving register states and stack data of
the original instruction, a set of instructions for performing a
call to the user breakpoint handler, a set of instructions for
restoring the register states and the stack data of the original
instruction, and a set of instructions for performing a jump to
the next instruction following the original instruction in the
original instruction stream. Moreover, the method step of
allocating the page may include mapping the page to the
process address space. Furthermore, the method step of asso-
ciating the trampoline with the breakpoint instruction may
include registering the kernel breakpoint handler.

In accordance with a second aspect of the various embodi-
ments described herein, a method for instrumentation is pro-
vided. The method may include detecting a breakpoint
instruction, calling a kernel breakpoint handler, modifying an
instruction pointer via the kernel breakpoint handler such that
the instruction pointer points to a trampoline associated with

10

25

40

45

55

2

the breakpoint instruction, and executing the trampoline. The
trampoline may include a copy of an original instruction in an
original instruction stream.

Executing the trampoline in accordance with this method
may include executing the original instruction. Moreover,
executing the trampoline may include at least one of saving
register states and a thread stack of the original instruction
and restoring the register states and the thread stack of the
original instruction. Furthermore, executing the trampoline
may include jumping to the next instruction following the
original instruction in the original instruction stream.

In accordance with a third aspect of the various embodi-
ments described herein, a system for instrumentation is pro-
vided. The system may include a breakpoint setup module for
allocating memory ofa process address space, for configuring
instrumentation data associated with an original instruction in
an original instruction stream, for storing the instrumentation
data in the allocated memory of the process address space,
and for associating the instrumentation data with a breakpoint
instruction. In addition, the system may include a breakpoint
execution module for executing a kernel breakpoint handler
that modifies an instruction pointer to point to the instrumen-
tation data and for executing the instrumentation data. The
instrumentation data may include a trampoline. The trampo-
line may include at least one of a copy of the original instruc-
tion, a set of instructions for saving register states and stack
data of the original instruction, a set of instructions for per-
forming a call to a user breakpoint module, a set of instruc-
tions for restoring the register states and the stack data of the
original instruction, and a set of instructions for performing a
jump to the next instruction following the original instruction
in the original instruction stream.

Moreover, in accordance with this system, the breakpoint
setup module may store at least one of a user breakpoint
handler and user mode instructions in the allocated memory
of the process address space. Additionally, the breakpoint
setup module may associate the instrumentation data with the
breakpoint instruction by registering a kernel breakpoint han-
dler. The kernel breakpoint handler may modify the instruc-
tion pointer to point to the instrumentation data. Furthermore,
the breakpoint setup module may allocate memory of the
process address space by mapping a page to the process
address space.

In accordance with a fourth aspect of the various embodi-
ments described herein, a computer program product for
instrumentation preparation is provided. The computer pro-
gram product involves setting up a breakpoint in preparation
for instrumentation. The computer program product may
include a computer readable storage medium having com-
puter readable program code instructions stored therein that
may include sets of computer instructions for performing one
or more steps of the aforementioned instrumentation prepa-
ration method.

In accordance with a fifth aspect of the various embodi-
ments described herein, a computer program product for
instrumentation is provided. The computer program product
may include a computer readable storage medium having
computer readable program code instructions stored therein
that may include sets of computer instructions for performing
one or more steps of the aforementioned instrumentation
method.

US 9,336,001 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The various embodiments described herein will be
described in detail with reference to the following figures.

FIG. 1 is a block diagram illustrating a computing system
comprising a dynamic instrumentation system, in accordance
with an exemplary embodiment.

FIG. 2 is a dataflow diagram illustrating the dynamic
instrumentation system of FIG. 1 in further detail, in accor-
dance with an exemplary embodiment.

FIG. 3 is a flowchart illustrating a method that can be
performed by the dynamic instrumentation system of FIG. 2
in order to prepare for instrumentation, in accordance with an
exemplary embodiment.

FIG. 4 is a flowchart illustrating a breakpoint setup method
that can be performed by the dynamic instrumentation system
of FIG. 2, in accordance with an exemplary embodiment.

FIG. 51s aflowchart illustrating an instrumentation method
that can be performed by the dynamic instrumentation system
of FIG. 2, in accordance with an exemplary embodiment.

FIG. 6 is a flowchart illustrating a trampoline execution
method that can be performed by the dynamic instrumenta-
tion system of FIG. 2, in accordance with an exemplary
embodiment.

The drawings described herein are for illustration purposes
only and are not intended to limit the scope of the present
disclosure in any way. Throughout the drawings, correspond-
ing reference numerals indicate like or corresponding parts
and features.

DETAILED DESCRIPTION

Reference will now be made in detail to the subject matter
disclosed, which is illustrated in the accompanying drawings.
It will be readily understood that the components of the vari-
ous embodiments as generally described and illustrated in the
figures herein may be arranged and designed in a wide variety
of different configurations in addition to the described exem-
plary embodiments. Thus, the following detailed description
of the various embodiments, as represented in the figures, is
not intended to limit the scope of the disclosure as claimed but
rather is merely representative of the various embodiments.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in one or
more embodiments. In the following description, numerous
specific details are provided to give a thorough understanding
of embodiments of the invention. However, one skilled in the
relevant art will recognize that the various embodiments can
be practiced without one or more of the specific details and/or
can be practiced with other methods, components, materials,
etc. In other instances, well-known structures, materials, or
operations are not shown or described in detail to avoid
obscuring aspects of the various embodiments. The various
embodiments described herein will be best understood by
reference to the drawings. The following description is
intended only by way of example and simply illustrates cer-
tain selected exemplary embodiments as claimed herein.

The flowchart and block diagrams in the drawings illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products in accordance with various embodiments. In
this regard, each block in the drawings may represent a mod-
ule, segment, or portion of code, which comprises one or
more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the drawings. For

10

15

20

25

30

35

40

45

50

55

60

65

4

example, two blocks shown in succession may be executed
substantially concurrently, or the blocks sometimes may be
executed in the reverse order, depending upon the function-
ality involved. Moreover, each block of the block diagrams
and/or flowchart illustrations, and combinations of blocks in
the block diagrams and/or flowchart illustrations, may be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or by combina-
tions of special purpose hardware and computer instructions.

FIG. 1 provides a block diagram of an exemplary comput-
ing system 100 that comprises a dynamic instrumentation
system in accordance with an exemplary embodiment. The
computing system 100 may comprise a general purpose com-
puter 101. As can be appreciated, the computing system 100
may comprise a number of computing devices, including but
not limited to a desktop computer, a laptop, a server, a por-
table handheld device (e.g., a PDA, a mobile phone, etc.), or
any other electronic device capable of performing computa-
tion. The various embodiments described herein will be dis-
cussed in the context of the general purpose computer 101.

The computer 101 may comprise a processor 102, memory
104 coupled to a memory controller 106, one or more input
and/or output (1/O) devices 108, 110 (or peripherals) that are
communicatively coupled via a local input/output controller
112, and a display controller 114 coupled to a display 116. A
conventional keyboard 122 and mouse 124 may be coupled to
the input/output controller 112. Furthermore, the computing
system 100 may comprise a network interface 118 for cou-
pling the computing system 100 to a network 120. The net-
work 120 may transmit and receive data between the com-
puter 101 and external systems.

The memory 104 may store instructions that can be
executed by the processor 102. The instructions stored in
memory 104 may comprise one or more separate programs,
each of which may comprise an ordered listing of executable
instructions for implementing logical functions. As illus-
trated in FIG. 1, the instructions stored in the memory 104
may comprise a suitable operating system (OS) 126. The
operating system 126 may control the execution of other
computer programs and may provide scheduling, input-out-
put control, file and data management, memory management,
and communication control and related services.

The processor 102 may be configured to execute the
instructions stored within the memory 104, to communicate
data to and from the memory 104, and to generally control
operations of the computer 101 pursuant to the instructions
when the computer 101 is in operation. The processor 102
may be any custom made or commercially available proces-
sor, a central processing unit (CPU), an auxiliary processor
among several processors associated with the computer 101,
a semiconductor based microprocessor (in the form of a
microchip or chip set), a microprocessor, or any other device
for executing instructions.

The processor 102 may execute the instructions of a
dynamic instrumentation system 128. The dynamic instru-
mentation system 128 may be stored in the memory 104 (as
shown in FIG. 1), may be executed from a portable storage
device (e.g., CD-ROM, Diskette, Flash Drive, etc.) (not
shown), and/or may be run from a remote location, such as
from a central server (not shown).

Generally, the dynamic instrumentation system 128 may
collect data (e.g., performance data of a program of the com-
puter 101). Such data may be collected from a kernel address
space (while running in the kernel mode) and a user address
space. The dynamic instrumentation system 128 may collect
the data non-disruptively and without recompiling or rebuild-
ing the application.

US 9,336,001 B2

5

FIG. 2 illustrates the dynamic instrumentation system 128
in further detail in accordance with an exemplary embodi-
ment. The dynamic instrumentation system 128 may com-
prise one or more modules and data stores. As can be appre-
ciated, the modules may be implemented as a combination of
software, hardware, firmware, and/or other suitable compo-
nents that provide the described functionality. Moreover, the
modules shown in FIG. 2 may be combined and/or further
partitioned to similarly collect data from the kernel address
space and the user address space. In this example, the
dynamic instrumentation system 128 comprises a breakpoint
setup module 130 and a breakpoint execution module 132.

The breakpoint setup module 130 may receive as inputs an
instrumentation request 133, address data 134, kernel mode
data 136, and user mode data 138. The instrumentation
request 133 may be generated based on a user request to
instrument an original instruction stream (e.g., a program)
with a breakpoint. The address data 134 may comprise the
text address of an original instruction within the original
instruction stream. The kernel mode data 136 may comprise a
kernel breakpoint handler 154 (which may be an input to the
breakpoint execution module 132, as illustrated in FIG. 2 and
discussed below) or kernel instrumentation codes that are
executed in the kernel mode. The user mode data 138 may
comprise a user breakpoint handler 146 (which may be an
input to the breakpoint execution module 132, as illustrated in
FIG. 2 and discussed below) or user instrumentation codes
that are generally executed in the user mode. Based on the
inputs, the breakpoint setup module 130 may configure the
original instruction stream by inserting a breakpoint instruc-
tion.

The breakpoint setup module 130 may interface with a
process address space 140 associated with the address data
134. The process address space 140 generally stores code,
data, and a stack. When the instrumentation request 133 is
received, the breakpoint setup module 130 may allocate a
page 142 of the process address space 140 to store breakpoint
instrumentation information. The allocation of the page 142
of'the process address space may be achieved by mapping the
page 142 to the process address space 140, and such mapping
may be facilitated via map data 143. The breakpoint setup
module 130 may store in the page 142 the user mode data 138
and trampoline data 144 representing a trampoline.

The trampoline data 144 may comprise a copy of the origi-
nal instruction (OriginaUnstruntion_Copy), a set of one or
more instructions for saving register states and stack data of
the original instruction (Save_Registers()), a set of one or
more instructions for performing a call to the user breakpoint
handler 146 (Call_User_BreakpoinCHandler()), a set of one
or more instructions for restoring the register states and the
stack data of the original instruction (Restore_Registers()),
and a set of one or more instructions for performing a jump to
the next instruction following the original instruction in the
original instruction stream (Jump_NexClnstruction). The
breakpoint setup module 130 may define the trampoline data
144 based on the instruction data stored in the process address
space 140.

The breakpoint setup module 130 may replace the original
instruction with the breakpoint instruction via breakpoint
data 148. Moreover, the breakpoint setup module 130 may
generate a registration request 150 to register the kernel
breakpoint handler 154 for the breakpoint instruction. The
registration of the kernel breakpoint handler 154 may associ-
ate the trampoline data 144 and other kernel mode data 136
with the breakpoint instruction.

The breakpoint execution module 132 may receive as
inputs an incoming instruction 152, the kernel breakpoint

25

40

45

50

65

6

handler 154, the trampoline data 144, and the user breakpoint
handler 146. The incoming instruction 152 indicates the
instruction to be processed. When the incoming instruction
152 is a breakpoint instruction, the breakpoint execution
module 132 may execute the kernel breakpoint handler 154
that is registered for the breakpoint instruction.

The kernel breakpoint handler 154 may modify an instruc-
tion pointer to point to the trampoline in the page 142 of the
process address space 140. The kernel breakpoint handler 154
may return after modifying the instruction pointer. The break-
point execution module 132 then may execute the trampoline
by, for example, saving the register states and the stack data of
the original instruction, executing the user breakpoint handler
146, restoring the register states and the stack data of the
original instruction, executing the original instruction, and
jumping to the next instruction following the original instruc-
tion in the original instruction stream.

With reference to FIGS. 3-6 and with continued reference
to FIG. 2, methods will be described that can be performed by
the dynamic instrumentation system 128 of FIG. 2 in accor-
dance with an exemplary embodiment. The methods may
involve an original instruction in an original instruction
stream. As can be appreciated in light of the disclosure, the
order of operation within the methods is not limited to the
sequential execution as illustrated in FIGS. 3-6, but rather
may be performed in one or more varying orders as applicable
and in accordance with the present disclosure. Furthermore,
one or more steps of the methods may be added or removed
without altering the spirit of the methods.

FIG. 3 illustrates a method that can be performed by the
dynamic instrumentation system 128 of FIG. 2 in order to
prepare for instrumentation involving the original instruction
in accordance with an exemplary embodiment. The process
may begin at block 300. The inputs may be monitored for an
instrumentation request, and at block 310 it may be deter-
mined whether an instrumentation request has been received.
When an instrumentation request is received at block 310, a
breakpoint may be set up at block 320, as will be further
discussed herein in the context of FIG. 4. Subsequently, it
may be determined at block 330 whether the breakpoint setup
is successful. If the breakpoint setup is successful, then the
process may end at block 350. Conversely, if the breakpoint
setup is not successful, then an error message may be sent
(e.g., sent to the user) at block 340 before the process ends at
block 350. Once the process ends, subsequent instructions in
the original instruction stream may be processed in accor-
dance with an instrumentation method further discussed
herein in the context of FIG. 5.

FIG. 4 illustrates a breakpoint setup method that may be
performed by the breakpoint setup module 130 of FIG. 2 in
accordance with an exemplary embodiment. The process
steps performed in accordance with this method further
define the breakpoint setup step previously presented with
respect to block 320 of the method illustrated in FIG. 3. The
process may begin at block 400. The address data (text
address) 134 of the original instruction may be obtained at
block 405, the kernel mode data 136 may be obtained at block
410, and the user mode data 138 may be obtained at block
415. At block 420 it may be determined whether the obtained
address data 134 is valid. If it is determined that the obtained
address data 134 is invalid, then an error message may be sent
(e.g., sent to the user) at block 425, and the process then may
end at block 455. Conversely, if it is determined that the
obtained address data 134 is valid, then at block 430 addi-
tional memory of the process address space 140 may be
allocated in the form of the page 142. The memory allocation
may be achieved by mapping the page 142 to the process

US 9,336,001 B2

7

address space 140. Subsequently, a trampoline may be cre-
ated and stored in the page 142 at block 435. As previously
discussed with reference to FIG. 2, the trampoline may be
represented by the trampoline data 144 and may comprise a
copy of the original instruction. The user breakpoint handler
146 may be copied to the page 142 at block 440. The kernel
breakpoint handler 154 may be registered at block 445, and a
breakpoint (i.e., breakpoint instruction) may be inserted at
block 450. As previously mentioned, the registration of the
kernel breakpoint handler 154 may associate the trampoline
data 144 with the breakpoint instruction. The inserted break-
point instruction may replace the original instruction. There-
after, the process may end at block 455. It should be noted that
an existing breakpoint may be removed as desired using a
process analogous to the process described above.

FIG. 5 illustrates an instrumentation method in accordance
with an exemplary embodiment. The process may begin at
block 500. An incoming instruction 152 in the original
instruction stream may be received at block 510. Then, it may
be determined whether the incoming instruction 152 is a
breakpoint instruction at block 520. That is to say, it may be
determined whether a breakpoint hit that causes a breakpoint
exception has occurred. If at block 520 it is determined that
the incoming instruction 152 is not a breakpoint instruction
(i.e., there is no breakpoint hit), then the process may end at
block 560. Conversely, if it is determined that the incoming
instruction 152 is a breakpoint instruction (i.e., there is a
breakpoint hit), then the kernel breakpoint handler 154 may
be called at block 530 in order to handle the breakpoint
exception. At block 540, the value of the instruction pointer
may be modified by means of the kernel breakpoint handler
154 to point to the trampoline stored in the page 142 that is
mapped to the process address space 140. Subsequently, the
trampoline may be executed at block 550, as will be further
discussed herein in the context of FIG. 6. Thereafter, the
process may end at block 560.

FIG. 6 illustrates a trampoline execution method that may
be performed by the breakpoint execution module 132 of
FIG. 2 in accordance with an exemplary embodiment. The
process steps performed in accordance with this method fur-
ther define the trampoline execution step previously pre-
sented with respect to block 550 of the instrumentation
method illustrated in FIG. 5. The process may begin at block
600. The trampoline may save the registers (including the
register states) and the thread stack of the original instruction
atblock 610. The trampoline may execute the user breakpoint
handler at block 620. Once the user breakpoint handler is
executed, the trampoline may restore the registers and the
thread stack of the original instruction at process block 630.
Subsequently, the trampoline may execute the original
instruction at block 640 and then may jump to the next
instruction after the breakpoint instruction (i.e., the next
instruction following the original instruction in the original
instruction stream) at block 650. Thereafter, the process may
end at block 660.

One or more aspects of the various embodiments described
herein may be included in an article of manufacture (e.g., one
or more computer program products) comprising a computer
readable medium. The computer readable medium may com-
prise computer readable program code for providing and
facilitating the capabilities of the present disclosure. The
article of manufacture may be included as a part of a computer
system or may be provided separately. Additionally, at least
one program storage device readable by a machine, tangibly
embodying at least one program of instructions executable by
the machine to perform the capabilities of the present disclo-
sure, may be provided.

10

15

20

25

30

35

40

45

50

55

60

65

8

A computer usable or computer readable medium may be
utilized, or any combination of computer usable or computer
readable media may be utilized. The computer usable or
computer readable medium may be, for example, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, device, or propagation medium.
More specific examples (a non-exhaustive list) of the com-
puter readable medium include an electrical connection hav-
ing one or more wires, a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CDROM), an optical storage
device, a transmission media such as those supporting the
Internet or an intranet, or a magnetic storage device. Note that
the computer usable or computer readable medium may be
paper or another suitable medium upon which the program is
printed, as the program may be electronically captured, via,
for instance, optical scanning of the paper or other medium,
then compiled, interpreted, or otherwise processed in a suit-
able manner, if necessary, and then stored in a computer
memory. In the context of this disclosure, a computer usable
or computer readable medium may be any medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device. The computer usable
medium may include a propagated data signal with the com-
puter usable program code embodied therewith, either in
baseband or as part of a carrier wave. The computer usable
program code may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti-
cal fiber cable, RF, etc.

Computer program code for carrying out operations of the
various embodiments described herein may be written in any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java,
Smalltalk, C++, or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on a user’s computer, partly on a user’s
computer, as a stand-alone software package, partly on a
user’s computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to a user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

While exemplary embodiments have been described
herein, it should be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the disclosure first described.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. The cor-
responding structures, features, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The disclosure has
been presented for purposes of illustration and description,
but is not intended to be exhaustive or limited to the various
embodiments in the form disclosed. Many modifications and

US 9,336,001 B2

9

variations will be apparent to those of ordinary skill in the art
without departing from the scope and spirit of the various
embodiments. The exemplary embodiments have been cho-
sen and described in order to best explain the principles of the
various embodiments and the practical application, and to
enable others of ordinary skill in the art to understand the
various embodiments. The various embodiments may include
various modifications as are suited to the particular use con-
templated.

What is claimed is:

1. A method comprising:

creating a trampoline associated with a breakpoint instruc-
tion, the trampoline comprising a copy of an original
instruction in an original instruction stream, a set of
instructions for saving register states and stack data of
the original instruction, and a set of instructions for
restoring the register states and the stack data of the
original instruction;

detecting the breakpoint instruction;

calling a kernel breakpoint handler;

modifying an instruction pointer via the kernel breakpoint
handler such that the instruction pointer points to the
trampoline; and

executing the trampoline by operation of one or more pro-
cessors, wherein executing the trampoline comprises
executing the original instruction.

2. The method according to claim 1, wherein executing the
trampoline further comprises at least one of saving the regis-
ter states and the stack data of the original instruction and
restoring the register states and the stack data of the original
instruction.

3. The method according to claim 1, wherein executing the
trampoline further comprises jumping to a next instruction
following the original instruction in the original instruction
stream.

4. The method according to claim 1, further comprising:

allocating a page of a process address space; and

storing the trampoline in the page.

5. The method according to claim 4, wherein allocating the
page comprises mapping the page to the process address
space.

6. The method according to claim 1, wherein the trampo-
line further comprises at least one of a set of instructions for
performing a call to a user breakpoint handler and a set of
instructions for performing a jump to a next instruction fol-
lowing the original instruction in the original instruction
stream.

7. A system comprising:

a breakpoint setup module configured to allocate memory
of a process address space, configure instrumentation
data associated with an original instruction in an original
instruction stream, store the instrumentation data in the
allocated memory of the process address space, and
associate the instrumentation data with a breakpoint
instruction, wherein the instrumentation data includes a
trampoline comprising a copy of the original instruction,
a set of instructions for saving register states and stack
data of the original instruction, and a set of instructions
for restoring the register states and the stack data of the
original instruction; and

a breakpoint execution module configured to execute a
kernel breakpoint handler that modifies an instruction
pointer such that the instruction pointer points to the
trampoline and further configured to execute the tram-
poline, wherein the breakpoint execution module

10

15

20

25

30

35

40

45

55

60

65

10

includes one or more processors, and wherein executing
the trampoline comprises executing the original instruc-
tion.

8. The system according to claim 7, wherein the trampoline
comprises at least one of a set of instructions for performing
a call to a user breakpoint module and a set of instructions for
performing a jump to a next instruction following the original
instruction in the original instruction stream.

9. The system according to claim 7, wherein the breakpoint
setup module is further configured to store at least one of a
user breakpoint handler and user mode instructions in the
allocated memory of the process address space.

10. The system according to claim 7, wherein the break-
point setup module is further configured to associate the
instrumentation data with the breakpoint instruction by reg-
istering a kernel breakpoint handler.

11. The system according to claim 7, wherein the break-
point setup module is further configured to allocate memory
of'the process address space by mapping a page to the process
address space.

12. The system according to claim 7, wherein executing the
trampoline further comprises at least one of saving the regis-
ter states and the stack data of the original instruction and
restoring the register states and the stack data of the original
instruction.

13. The system according to claim 7, wherein executing the
trampoline further comprises jumping to a next instruction
following the original instruction in the original instruction
stream.

14. A computer program product including a non-transi-
tory computer readable medium having program code
instructions embodied therewith, the program code instruc-
tions executable by a computing device to perform an opera-
tion comprising:

creating a trampoline associated with a breakpoint instruc-

tion, the trampoline comprising a copy of an original
instruction in an original instruction stream, a set of
instructions for saving register states and stack data of
the original instruction, and a set of instructions for
restoring the register states and the stack data of the
original instruction;

detecting the breakpoint instruction;

calling a kernel breakpoint handler;

modifying an instruction pointer via the kernel breakpoint

handler such that the instruction pointer points to the
trampoline; and

executing the trampoline by operation of one or more pro-

cessors, wherein executing the trampoline comprises
executing the original instruction.

15. The computer program product according to claim 14,
wherein executing the trampoline further comprises at least
one of saving the register states and the stack data of the
original instruction and restoring the register states and the
stack data of the original instruction.

16. The computer program product according to claim 14,
wherein executing the trampoline further comprises jumping
to the next instruction following the original instruction in the
original instruction stream.

17. The computer program product according to claim 14,
further comprising:

allocating a page of a process address space; and

storing the trampoline in the page.

18. The computer program product according to claim 17,
wherein allocating the page comprises mapping the page to
the process address space.

US 9,336,001 B2
11

19. The computer program product according to claim 14,
wherein the trampoline further comprises at least one of a set
of instructions for performing a call to a user breakpoint
handler and a set of instructions for performing a jump to a
next instruction following the original instruction in the origi- 5
nal instruction stream.

#* #* #* #* #*

12

